Logo Search packages:      
Sourcecode: r-cran-vgam version File versions  Download package

veigen.f

      subroutine veigen(M, n, x, vals, ov, vec, junk1, junk2,
     *                  wk, rowi, coli, dimmv, ec) 
      implicit logical (a-z)
      integer          M, n, ov, ec, i, k, dimmv, MM2,
     *                 rowi(M*(M+1)/2), coli(M*(M+1)/2), full
      double precision x(dimmv, n), vals(M, n), vec(M,M,n), junk1(M),
     *                 junk2(M), wk(M,M)

      MM2 = M*(M+1)/2
      if(dimmv.eq.MM2) then
          full = 1
      else
          full = 0
      end if
      do 300 i=1,n
          do 600 k=1,dimmv
              wk(rowi(k), coli(k)) = x(k,i)
              wk(coli(k), rowi(k)) = wk(rowi(k), coli(k))
600       continue

          if(full.eq.0) then
              do 500 k=dimmv+1,MM2
                  wk(rowi(k), coli(k)) = 0.0d0
                  wk(coli(k), rowi(k)) = 0.0d0
500           continue
          end if
c
          call vrs818(M, M, wk, vals(1,i), ov, vec(1,1,i), junk1, 
     *                junk2, ec)


          if(ec.ne.0) goto 200
300   continue
c
200   return
      end


      SUBROUTINE VRS818(NM,N,A,W,MATZ,Z,FV1,FV2,IERR)
C
      INTEGER N,NM,IERR,MATZ
      DOUBLE PRECISION A(NM,N),W(N),Z(NM,N),FV1(N),FV2(N)
C
C     THIS SUBROUTINE CALLS THE RECOMMENDED SEQUENCE OF
C     SUBROUTINES FROM THE EIGENSYSTEM SUBROUTINE PACKAGE (EISPACK)
C     TO FIND THE EIGENVALUES AND EIGENVECTORS (IF DESIRED)
C     OF A REAL SYMMETRIC MATRIX.
C
C     ON INPUT
C
C        NM  MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL
C        ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C        DIMENSION STATEMENT.
C
C        N  IS THE ORDER OF THE MATRIX  A.
C
C        A  CONTAINS THE REAL SYMMETRIC MATRIX.
C
C        MATZ  IS AN INTEGER VARIABLE SET EQUAL TO ZERO IF
C        ONLY EIGENVALUES ARE DESIRED.  OTHERWISE IT IS SET TO
C        ANY NON-ZERO INTEGER FOR BOTH EIGENVALUES AND EIGENVECTORS.
C
C     ON OUTPUT
C
C        W  CONTAINS THE EIGENVALUES IN ASCENDING ORDER.
C
C        Z  CONTAINS THE EIGENVECTORS IF MATZ IS NOT ZERO.
C
C        IERR  IS AN INTEGER OUTPUT VARIABLE SET EQUAL TO AN ERROR
C           COMPLETION CODE DESCRIBED IN THE DOCUMENTATION FOR TQLRAT
C           AND TQL2.  THE NORMAL COMPLETION CODE IS ZERO.
C
C        FV1  AND  FV2  ARE TEMPORARY STORAGE ARRAYS.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      IF (N .LE. NM) GO TO 10
      IERR = 10 * N
      GO TO 50
C
   10 IF (MATZ .NE. 0) GO TO 20
C     .......... FIND EIGENVALUES ONLY ..........
      CALL  VTRED1(NM,N,A,W,FV1,FV2)
      CALL  TQLRA9(N,W,FV2,IERR)
      GO TO 50
C     .......... FIND BOTH EIGENVALUES AND EIGENVECTORS ..........
   20 CALL  VTRED2(NM,N,A,W,FV1,Z)
      CALL  VTQL21(NM,N,W,FV1,Z,IERR)
   50 RETURN
      END



      SUBROUTINE VTQL21(NM,N,D,E,Z,IERR)
C
      INTEGER I,J,K,L,M,N,II,L1,L2,NM,MML,IERR
      DOUBLE PRECISION D(N),E(N),Z(NM,N)
      DOUBLE PRECISION C,C2,C3,DL1,EL1,F,G,H,P,R,S,S2,TST1,TST2,PYTHA9
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQL2,
C     NUM. MATH. 11, 293-306(1968) BY BOWDLER, MARTIN, REINSCH, AND
C     WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 227-240(1971).
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES AND EIGENVECTORS
C     OF A SYMMETRIC TRIDIAGONAL MATRIX BY THE QL METHOD.
C     THE EIGENVECTORS OF A FULL SYMMETRIC MATRIX CAN ALSO
C     BE FOUND IF  TRED2  HAS BEEN USED TO REDUCE THIS
C     FULL MATRIX TO TRIDIAGONAL FORM.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE INPUT MATRIX
C          IN ITS LAST N-1 POSITIONS.  E(1) IS ARBITRARY.
C
C        Z CONTAINS THE TRANSFORMATION MATRIX PRODUCED IN THE
C          REDUCTION BY  TRED2, IF PERFORMED.  IF THE EIGENVECTORS
C          OF THE TRIDIAGONAL MATRIX ARE DESIRED, Z MUST CONTAIN
C          THE IDENTITY MATRIX.
C
C      ON OUTPUT
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT BUT
C          UNORDERED FOR INDICES 1,2,...,IERR-1.
C
C        E HAS BEEN DESTROYED.
C
C        Z CONTAINS ORTHONORMAL EIGENVECTORS OF THE SYMMETRIC
C          TRIDIAGONAL (OR FULL) MATRIX.  IF AN ERROR EXIT IS MADE,
C          Z CONTAINS THE EIGENVECTORS ASSOCIATED WITH THE STORED
C          EIGENVALUES.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 30 ITERATIONS.
C
C     CALLS PYTHA9 FOR  DSQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
c
c     unnecessary initialization of C3 and S2 to keep g77 -Wall happy
c
      C3 = 0.0D0
      S2 = 0.0D0
C
      IERR = 0
      IF (N .EQ. 1) GO TO 1001
C
      DO 100 I = 2, N
  100 E(I-1) = E(I)
C
      F = 0.0D0
      TST1 = 0.0D0
      E(N) = 0.0D0
C
      DO 240 L = 1, N
         J = 0
         H = DABS(D(L)) + DABS(E(L))
         IF (TST1 .LT. H) TST1 = H
C     .......... LOOK FOR SMALL SUB-DIAGONAL ELEMENT ..........
         DO 110 M = L, N
            TST2 = TST1 + DABS(E(M))
            IF (TST2 .EQ. TST1) GO TO 120
C     .......... E(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C                THROUGH THE BOTTOM OF THE LOOP ..........
  110    CONTINUE
C
  120    IF (M .EQ. L) GO TO 220
  130    IF (J .EQ. 30) GO TO 1000
         J = J + 1
C     .......... FORM SHIFT ..........
         L1 = L + 1
         L2 = L1 + 1
         G = D(L)
         P = (D(L1) - G) / (2.0D0 * E(L))
         R = PYTHA9(P,1.0D0)
         D(L) = E(L) / (P + DSIGN(R,P))
         D(L1) = E(L) * (P + DSIGN(R,P))
         DL1 = D(L1)
         H = G - D(L)
         IF (L2 .GT. N) GO TO 145
C
         DO 140 I = L2, N
  140    D(I) = D(I) - H
C
  145    F = F + H
C     .......... QL TRANSFORMATION ..........
         P = D(M)
         C = 1.0D0
         C2 = C
         EL1 = E(L1)
         S = 0.0D0
         MML = M - L
C     .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
         DO 200 II = 1, MML
            C3 = C2
            C2 = C
            S2 = S
            I = M - II
            G = C * E(I)
            H = C * P
            R = PYTHA9(P,E(I))
            E(I+1) = S * R
            S = E(I) / R
            C = P / R
            P = C * D(I) - S * G
            D(I+1) = H + S * (C * G + S * D(I))
C     .......... FORM VECTOR ..........
            DO 180 K = 1, N
               H = Z(K,I+1)
               Z(K,I+1) = S * Z(K,I) + C * H
               Z(K,I) = C * Z(K,I) - S * H
  180       CONTINUE
C
  200    CONTINUE
C
         P = -S * S2 * C3 * EL1 * E(L) / DL1
         E(L) = S * P
         D(L) = C * P
         TST2 = TST1 + DABS(E(L))
         IF (TST2 .GT. TST1) GO TO 130
  220    D(L) = D(L) + F
  240 CONTINUE
C     .......... ORDER EIGENVALUES AND EIGENVECTORS ..........
      DO 300 II = 2, N
         I = II - 1
         K = I
         P = D(I)
C
         DO 260 J = II, N
            IF (D(J) .GE. P) GO TO 260
            K = J
            P = D(J)
  260    CONTINUE
C
         IF (K .EQ. I) GO TO 300
         D(K) = D(I)
         D(I) = P
C
         DO 280 J = 1, N
            P = Z(J,I)
            Z(J,I) = Z(J,K)
            Z(J,K) = P
  280    CONTINUE
C
  300 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 30 ITERATIONS ..........
 1000 IERR = L
 1001 RETURN
      END


      SUBROUTINE TQLRA9(N,D,E2,IERR)
C
      INTEGER I,J,L,M,N,II,L1,MML,IERR
      DOUBLE PRECISION D(N),E2(N)
      DOUBLE PRECISION B,C,F,G,H,P,R,S,T,EPSLO9,PYTHA9
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TQLRAT,
C     ALGORITHM 464, COMM. ACM 16, 689(1973) BY REINSCH.
C
C     THIS SUBROUTINE FINDS THE EIGENVALUES OF A SYMMETRIC
C     TRIDIAGONAL MATRIX BY THE RATIONAL QL METHOD.
C
C     ON INPUT
C
C        N IS THE ORDER OF THE MATRIX.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE INPUT MATRIX.
C
C        E2 CONTAINS THE SQUARES OF THE SUBDIAGONAL ELEMENTS OF THE
C          INPUT MATRIX IN ITS LAST N-1 POSITIONS.  E2(1) IS ARBITRARY.
C
C      ON OUTPUT
C
C        D CONTAINS THE EIGENVALUES IN ASCENDING ORDER.  IF AN
C          ERROR EXIT IS MADE, THE EIGENVALUES ARE CORRECT AND
C          ORDERED FOR INDICES 1,2,...IERR-1, BUT MAY NOT BE
C          THE SMALLEST EIGENVALUES.
C
C        E2 HAS BEEN DESTROYED.
C
C        IERR IS SET TO
C          ZERO       FOR NORMAL RETURN,
C          J          IF THE J-TH EIGENVALUE HAS NOT BEEN
C                     DETERMINED AFTER 30 ITERATIONS.
C
C     CALLS PYTHA9 FOR  DSQRT(A*A + B*B) .
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
c
c     unnecessary initialization of B and C to keep g77 -Wall happy
c
      B = 0.0D0
      C = 0.0D0
C
      IERR = 0
      IF (N .EQ. 1) GO TO 1001
C
      DO 100 I = 2, N
  100 E2(I-1) = E2(I)
C
      F = 0.0D0
      T = 0.0D0
      E2(N) = 0.0D0
C
      DO 290 L = 1, N
         J = 0
         H = DABS(D(L)) + DSQRT(E2(L))
         IF (T .GT. H) GO TO 105
         T = H
         B = EPSLO9(T)
         C = B * B
C     .......... LOOK FOR SMALL SQUARED SUB-DIAGONAL ELEMENT ..........
  105    DO 110 M = L, N
            IF (E2(M) .LE. C) GO TO 120
C     .......... E2(N) IS ALWAYS ZERO, SO THERE IS NO EXIT
C                THROUGH THE BOTTOM OF THE LOOP ..........
  110    CONTINUE
C
  120    IF (M .EQ. L) GO TO 210
  130    IF (J .EQ. 30) GO TO 1000
         J = J + 1
C     .......... FORM SHIFT ..........
         L1 = L + 1
         S = DSQRT(E2(L))
         G = D(L)
         P = (D(L1) - G) / (2.0D0 * S)
         R = PYTHA9(P,1.0D0)
         D(L) = S / (P + DSIGN(R,P))
         H = G - D(L)
C
         DO 140 I = L1, N
  140    D(I) = D(I) - H
C
         F = F + H
C     .......... RATIONAL QL TRANSFORMATION ..........
         G = D(M)
         IF (G .EQ. 0.0D0) G = B
         H = G
         S = 0.0D0
         MML = M - L
C     .......... FOR I=M-1 STEP -1 UNTIL L DO -- ..........
         DO 200 II = 1, MML
            I = M - II
            P = G * H
            R = P + E2(I)
            E2(I+1) = S * R
            S = E2(I) / R
            D(I+1) = H + S * (H + D(I))
            G = D(I) - E2(I) / G
            IF (G .EQ. 0.0D0) G = B
            H = G * P / R
  200    CONTINUE
C
         E2(L) = S * G
         D(L) = H
C     .......... GUARD AGAINST UNDERFLOW IN CONVERGENCE TEST ..........
         IF (H .EQ. 0.0D0) GO TO 210
         IF (DABS(E2(L)) .LE. DABS(C/H)) GO TO 210
         E2(L) = H * E2(L)
         IF (E2(L) .NE. 0.0D0) GO TO 130
  210    P = D(L) + F
C     .......... ORDER EIGENVALUES ..........
         IF (L .EQ. 1) GO TO 250
C     .......... FOR I=L STEP -1 UNTIL 2 DO -- ..........
         DO 230 II = 2, L
            I = L + 2 - II
            IF (P .GE. D(I-1)) GO TO 270
            D(I) = D(I-1)
  230    CONTINUE
C
  250    I = 1
  270    D(I) = P
  290 CONTINUE
C
      GO TO 1001
C     .......... SET ERROR -- NO CONVERGENCE TO AN
C                EIGENVALUE AFTER 30 ITERATIONS ..........
 1000 IERR = L
 1001 RETURN
      END



      SUBROUTINE VTRED1(NM,N,A,D,E,E2)
C
      INTEGER I,J,K,L,N,II,NM,JP1
      DOUBLE PRECISION A(NM,N),D(N),E(N),E2(N)
      DOUBLE PRECISION F,G,H,SCALE
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED1,
C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX
C     TO A SYMMETRIC TRIDIAGONAL MATRIX USING
C     ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        A CONTAINS THE REAL SYMMETRIC INPUT MATRIX.  ONLY THE
C          LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C     ON OUTPUT
C
C        A CONTAINS INFORMATION ABOUT THE ORTHOGONAL TRANS-
C          FORMATIONS USED IN THE REDUCTION IN ITS STRICT LOWER
C          TRIANGLE.  THE FULL UPPER TRIANGLE OF A IS UNALTERED.
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO.
C
C        E2 CONTAINS THE SQUARES OF THE CORRESPONDING ELEMENTS OF E.
C          E2 MAY COINCIDE WITH E IF THE SQUARES ARE NOT NEEDED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      DO 100 I = 1, N
         D(I) = A(N,I)
         A(N,I) = A(I,I)
  100 CONTINUE
C     .......... FOR I=N STEP -1 UNTIL 1 DO -- ..........
      DO 300 II = 1, N
         I = N + 1 - II
         L = I - 1
         H = 0.0D0
         SCALE = 0.0D0
         IF (L .LT. 1) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + DABS(D(K))
C
         IF (SCALE .NE. 0.0D0) GO TO 140
C
         DO 125 J = 1, L
            D(J) = A(L,J)
            A(L,J) = A(I,J)
            A(I,J) = 0.0D0
  125    CONTINUE
C
  130    E(I) = 0.0D0
         E2(I) = 0.0D0
         GO TO 300
C
  140    DO 150 K = 1, L
            D(K) = D(K) / SCALE
            H = H + D(K) * D(K)
  150    CONTINUE
C
         E2(I) = SCALE * SCALE * H
         F = D(L)
         G = -DSIGN(DSQRT(H),F)
         E(I) = SCALE * G
         H = H - F * G
         D(L) = F - G
         IF (L .EQ. 1) GO TO 285
C     .......... FORM A*U ..........
         DO 170 J = 1, L
  170    E(J) = 0.0D0
C
         DO 240 J = 1, L
            F = D(J)
            G = E(J) + A(J,J) * F
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
               G = G + A(K,J) * D(K)
               E(K) = E(K) + A(K,J) * F
  200       CONTINUE
C
  220       E(J) = G
  240    CONTINUE
C     .......... FORM P ..........
         F = 0.0D0
C
         DO 245 J = 1, L
            E(J) = E(J) / H
            F = F + E(J) * D(J)
  245    CONTINUE
C
         H = F / (H + H)
C     .......... FORM Q ..........
         DO 250 J = 1, L
  250    E(J) = E(J) - H * D(J)
C     .......... FORM REDUCED A ..........
         DO 280 J = 1, L
            F = D(J)
            G = E(J)
C
            DO 260 K = J, L
  260       A(K,J) = A(K,J) - F * E(K) - G * D(K)
C
  280    CONTINUE
C
  285    DO 290 J = 1, L
            F = D(J)
            D(J) = A(L,J)
            A(L,J) = A(I,J)
            A(I,J) = F * SCALE
  290    CONTINUE
C
  300 CONTINUE
C
      RETURN
      END



      SUBROUTINE VTRED2(NM,N,A,D,E,Z)
C
      INTEGER I,J,K,L,N,II,NM,JP1
      DOUBLE PRECISION A(NM,N),D(N),E(N),Z(NM,N)
      DOUBLE PRECISION F,G,H,HH,SCALE
C
C     THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE TRED2,
C     NUM. MATH. 11, 181-195(1968) BY MARTIN, REINSCH, AND WILKINSON.
C     HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 212-226(1971).
C
C     THIS SUBROUTINE REDUCES A REAL SYMMETRIC MATRIX TO A
C     SYMMETRIC TRIDIAGONAL MATRIX USING AND ACCUMULATING
C     ORTHOGONAL SIMILARITY TRANSFORMATIONS.
C
C     ON INPUT
C
C        NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
C          ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
C          DIMENSION STATEMENT.
C
C        N IS THE ORDER OF THE MATRIX.
C
C        A CONTAINS THE REAL SYMMETRIC INPUT MATRIX.  ONLY THE
C          LOWER TRIANGLE OF THE MATRIX NEED BE SUPPLIED.
C
C     ON OUTPUT
C
C        D CONTAINS THE DIAGONAL ELEMENTS OF THE TRIDIAGONAL MATRIX.
C
C        E CONTAINS THE SUBDIAGONAL ELEMENTS OF THE TRIDIAGONAL
C          MATRIX IN ITS LAST N-1 POSITIONS.  E(1) IS SET TO ZERO.
C
C        Z CONTAINS THE ORTHOGONAL TRANSFORMATION MATRIX
C          PRODUCED IN THE REDUCTION.
C
C        A AND Z MAY COINCIDE.  IF DISTINCT, A IS UNALTERED.
C
C     QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
C     MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY
C
C     THIS VERSION DATED AUGUST 1983.
C
C     ------------------------------------------------------------------
C
      DO 100 I = 1, N
C
         DO 80 J = I, N
   80    Z(J,I) = A(J,I)
C
         D(I) = A(N,I)
  100 CONTINUE
C
      IF (N .EQ. 1) GO TO 510
C     .......... FOR I=N STEP -1 UNTIL 2 DO -- ..........
      DO 300 II = 2, N
         I = N + 2 - II
         L = I - 1
         H = 0.0D0
         SCALE = 0.0D0
         IF (L .LT. 2) GO TO 130
C     .......... SCALE ROW (ALGOL TOL THEN NOT NEEDED) ..........
         DO 120 K = 1, L
  120    SCALE = SCALE + DABS(D(K))
C
         IF (SCALE .NE. 0.0D0) GO TO 140
  130    E(I) = D(L)
C
         DO 135 J = 1, L
            D(J) = Z(L,J)
            Z(I,J) = 0.0D0
            Z(J,I) = 0.0D0
  135    CONTINUE
C
         GO TO 290
C
  140    DO 150 K = 1, L
            D(K) = D(K) / SCALE
            H = H + D(K) * D(K)
  150    CONTINUE
C
         F = D(L)
         G = -DSIGN(DSQRT(H),F)
         E(I) = SCALE * G
         H = H - F * G
         D(L) = F - G
C     .......... FORM A*U ..........
         DO 170 J = 1, L
  170    E(J) = 0.0D0
C
         DO 240 J = 1, L
            F = D(J)
            Z(J,I) = F
            G = E(J) + Z(J,J) * F
            JP1 = J + 1
            IF (L .LT. JP1) GO TO 220
C
            DO 200 K = JP1, L
               G = G + Z(K,J) * D(K)
               E(K) = E(K) + Z(K,J) * F
  200       CONTINUE
C
  220       E(J) = G
  240    CONTINUE
C     .......... FORM P ..........
         F = 0.0D0
C
         DO 245 J = 1, L
            E(J) = E(J) / H
            F = F + E(J) * D(J)
  245    CONTINUE
C
         HH = F / (H + H)
C     .......... FORM Q ..........
         DO 250 J = 1, L
  250    E(J) = E(J) - HH * D(J)
C     .......... FORM REDUCED A ..........
         DO 280 J = 1, L
            F = D(J)
            G = E(J)
C
            DO 260 K = J, L
  260       Z(K,J) = Z(K,J) - F * E(K) - G * D(K)
C
            D(J) = Z(L,J)
            Z(I,J) = 0.0D0
  280    CONTINUE
C
  290    D(I) = H
  300 CONTINUE
C     .......... ACCUMULATION OF TRANSFORMATION MATRICES ..........
      DO 500 I = 2, N
         L = I - 1
         Z(N,L) = Z(L,L)
         Z(L,L) = 1.0D0
         H = D(I)
         IF (H .EQ. 0.0D0) GO TO 380
C
         DO 330 K = 1, L
  330    D(K) = Z(K,I) / H
C
         DO 360 J = 1, L
            G = 0.0D0
C
            DO 340 K = 1, L
  340       G = G + Z(K,I) * Z(K,J)
C
            DO 360 K = 1, L
               Z(K,J) = Z(K,J) - G * D(K)
  360    CONTINUE
C
  380    DO 400 K = 1, L
  400    Z(K,I) = 0.0D0
C
  500 CONTINUE
C
  510 DO 520 I = 1, N
         D(I) = Z(N,I)
         Z(N,I) = 0.0D0
  520 CONTINUE
C
      Z(N,N) = 1.0D0
      E(1) = 0.0D0
      RETURN
      END



      DOUBLE PRECISION FUNCTION EPSLO9(X)
      DOUBLE PRECISION X
C
C     ESTIMATE UNIT ROUNDOFF IN QUANTITIES OF SIZE X.
C
      DOUBLE PRECISION A,B,C,EPS
C
C     THIS PROGRAM SHOULD FUNCTION PROPERLY ON ALL SYSTEMS
C     SATISFYING THE FOLLOWING TWO ASSUMPTIONS,
C        1.  THE BASE USED IN REPRESENTING FLOATING POINT
C            NUMBERS IS NOT A POWER OF THREE.
C        2.  THE QUANTITY  A  IN STATEMENT 10 IS REPRESENTED TO 
C            THE ACCURACY USED IN FLOATING POINT VARIABLES
C            THAT ARE STORED IN MEMORY.
C     THE STATEMENT NUMBER 10 AND THE GO TO 10 ARE INTENDED TO
C     FORCE OPTIMIZING COMPILERS TO GENERATE CODE SATISFYING 
C     ASSUMPTION 2.
C     UNDER THESE ASSUMPTIONS, IT SHOULD BE TRUE THAT,
C            A  IS NOT EXACTLY EQUAL TO FOUR-THIRDS,
C            B  HAS A ZERO FOR ITS LAST BIT OR DIGIT,
C            C  IS NOT EXACTLY EQUAL TO ONE,
C            EPS  MEASURES THE SEPARATION OF 1.0 FROM
C                 THE NEXT LARGER FLOATING POINT NUMBER.
C     THE DEVELOPERS OF EISPACK WOULD APPRECIATE BEING INFORMED
C     ABOUT ANY SYSTEMS WHERE THESE ASSUMPTIONS DO NOT HOLD.
C
C     THIS VERSION DATED 4/6/83.
C
      A = 4.0D0/3.0D0
   10 B = A - 1.0D0
      C = B + B + B
      EPS = DABS(C-1.0D0)
      IF (EPS .EQ. 0.0D0) GO TO 10
      EPSLO9 = EPS*DABS(X)
      RETURN
      END


      DOUBLE PRECISION FUNCTION PYTHA9(A,B)
      DOUBLE PRECISION A,B
C
C     FINDS DSQRT(A**2+B**2) WITHOUT OVERFLOW OR DESTRUCTIVE UNDERFLOW
C
      DOUBLE PRECISION P,R,S,T,U
      P = DMAX1(DABS(A),DABS(B))
      IF (P .EQ. 0.0D0) GO TO 20
      R = (DMIN1(DABS(A),DABS(B))/P)**2
   10 CONTINUE
         T = 4.0D0 + R
         IF (T .EQ. 4.0D0) GO TO 20
         S = R/T
         U = 1.0D0 + 2.0D0*S
         P = U*P
         R = (S/U)**2 * R
      GO TO 10
   20 PYTHA9 = P
      RETURN
      END




Generated by  Doxygen 1.6.0   Back to index